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Abstract:  “Balancing” methods, using matching or reweighting to improve the balance between 
treated and control units, are central methodological tools for causal inference in the social sciences 
using cross-sectional observational data.  We address here one method which has attained 
substantial popularity, especially in political science, Coarsened Exact Matching (CEM) (Iacus, 
King, and Porro 2012).  We report evidence that CEM performs substantially worse than other 
balancing methods and explain why it does so.  We replicate five recent papers that use CEM and 
compare CEM-based results to those from other methods.  CEM drops substantially more 
observations than other methods; is much less precise; can severely misidentify average treatment 
effects relative to other methods, and to CEM itself (applied by subsetting the sample, applying 
CEM to each subset, and combining the subset estimates); can produce estimates that are sensitive 
to adding noninformative covariates; and can over-reject the null when the null is true.  Our advice:  
never use CEM as the sole balancing method, and there is little to be said for using it at all. 
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I.  Introduction 

Balancing methods, which use matching or reweighting to improve covariate balance between 

treated and control units, are central methodological tools for causal inference using observational data.  

Dozens of methods have been proposed.  One method which has become popular, especially in political 

science, is Coarsened Exact Matching (CEM) (Iacus, King, and Porro 2012).  Often, balancing methods 

are used as a form of “preprocessing” a sample to improve balance prior to regression analysis.  CEM is 

intended to be used in this way, but other balancing methods can also be combined with regression (e.g., 

Ho et al., 2007; Stuart, 2010).   

CEM is a combined matching, sample trimming, and reweighting method.  When using CEM, 

the researcher selects a limited number of core variables to balance on.  The CEM method divides each 

continuous variable into bins (the “coarsening” part), requires an exact match between treated and 

control units on the binned variables (the matching part), drops unmatched observations (the trimming 

part), and reweights the remaining observations (the reweighting part).  Thus, CEM can usefully be 

compared both to other matching methods and to other reweighting methods. 

We compare CEM, used to measure the average treatment effect on the treated (ATT) to five 

other well-known, widely used balancing approaches: propensity score matching (PSM), nearest-

neighbor matching (nnmatch, Abadie and Imbens, 2011); inverse propensity score weighting (IPW); 

entropy balancing (eBalance, Hainmueller, 2012); and inverse propensity weighting using covariate 

balance propensity scores (CBPS-weights; Imai and Ratkovic, 2014).  We chose methods that are well-

known in political science; are implemented in Stata, R, or both; and appear to perform well from prior 

research.1  As a basis for comparison, we began with a set of all papers using matching and reweighting 

                                                 
1  Busso, DiNardo and McCrary (2014) report good performance for IPW.  Zhao and Percival (2017) provide simulation 
evidence that IPW, eBalance, and CBPS-weights (CBPS used as a reweighting method, which is how we use it here) perform 
well when used with regression.  Chattopadhyay, Hase, and Zubizarreta (2020) report that exact balancing methods, including 
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published in the American Journal of Political Science over 2012-2016, obtained from a colleague.  We 

study all four papers which use CEM:  Black and Owens (2016); Mason (2015); Urban and Niebler 

(2012); Carpenter et al. (2012).2  We replicate selected results from each paper and compare results using 

CEM to those from the other methods, in each case followed by regression on the balanced dataset; and 

also to regression alone without balancing.  For a dataset with many covariates, CEM users must decide 

which to balance on and assess the tradeoff between better balance versus smaller sample size if one 

balances on more covariates.  We used the authors’ choices of which variables to balance on.   

At the core of causal inference with observational data is the need to impute the unobserved 

potential outcome for treated units from similar control units.  CEM, unlike the comparison methods, 

drops many treated units, for which matching control units cannot be found.  This reduces sample size; 

the loss of sample size increases rapidly with the number of covariates that one balances on.  Thus, CEM 

suffers strongly from the curse of dimensionality.  In contrast, the comparison methods preserve all 

treated units. 

We assess how far the coefficient estimates from each method are from the means from the other 

methods.  We also assess the relative precision of each method.  CEM produces higher s.e.’s than the 

other methods, sometimes much higher.  The loss of precision flows from the loss of sample size.  

Moreover, the CEM loss in sample can come from non-apparent parts of the sample space.  If treatment 

effects are heterogeneous, this can produce treatment effect estimates that are far from true effects.   

In the text, we illustrate CEM’s odd behavior using principally Black-Owens (2016) and Mason 

(2015).  Using CEM, Black-Owens find support for their conjecture that federal appellate judges who 

                                                 
eBalance and CBPS-weights, perform well relative to IPW.  All of these methods are implemented in R in MatchIt and 
inWeightIt (Greifer and Stuart 2021). 
2  We excluded Broockman (2013), who uses CEM in an idiosyncratic manner.  We later conducted our own search of AJPS 
and found several additional CEM papers during this time period.  See Appendix for a full list. 
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are contenders for Supreme Court vacancies write different opinions when a vacancy exists.  In contrast, 

regression alone and all comparison methods produce insignificant, negative coefficients.  CEM also 

produces outlier results for Mason (2015, but we relegate most details to the Appendix).   For Mason’s 

Thermometer Bias and Like Bias outcomes, both regression alone and all other methods support her 

hypothesis that partisan-ideological sorting (the tendency of ideology to align with political party) 

increases the intensity of partisan preferences.  In contrast, CEM coefficients are small and statistically 

insignificant.  While we do not know truth for either paper, that CEM is an outlier compared to all other 

approaches strongly suggests that the CEM estimate is incorrect.   

CEM coefficient estimates are also more sensitive than the other methods to which covariates 

are used for balancing (followed by regression on all covariates).  For both Black-Owens and Mason, as 

we increased the number of covariates used for balancing, the CEM estimates for ATT increasingly 

diverged from those from the other methods.  Moreover, CEM estimates change substantially if we add 

random covariates (uncorrelated with the outcome or treatment assignment) to the actual covariates, and 

also balance on the additional random covariates.  Yet, by construction, these random covariates should 

not affect the true ATT.  Regression alone and the comparison methods are unaffected by adding random 

covariates. 

Given this array of issues, our advice is to never use CEM as the sole balancing method.  We 

cannot rule out the potential for CEM to outperform the comparison methods for specific datasets or data 

structures that we did not study.  But our analysis suggests that other methods, available in Stata, R, or 

both, perform better.  Although not a focus of this project, we also find evidence, for the real-world 
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datasets we studied, that the reweighting methods generally outperform the matching methods (PSM and 

nnmatch).3   

This project emerged from a broader project using papers drawn principally from the American 

Journal of Political Science (AJPS), in which we are studying the performance of different balancing 

approaches, applied to real-world datasets.  We chose CEM as one comparison method.  We did not 

expect to find dramatic differences between CEM and other methods;  we planned merely to compare it 

to other popular approaches.  Our decision to write separately about CEM emerged when we observed 

the stark differences between CEM and other balancing approaches. 

This paper proceeds as follows.  Part II provides background:  a summary of CEM and our other 

balancing methods, and an overview of the results we replicate across methods.  Part III discusses our 

methods. Part IV provides an overview of the differences between CEM and other methods.  Part V 

discusses the results from each method, as applied to each paper.  Part VI discusses the main takeaways 

from our analysis.   

II.  Background 

We provide in the Appendix an overview of each of the matching methods and how they compare 

to each other.  We provide a more summary treatment here, focusing on CEM. 

A.  Summary of Coarsened Exact Matching 

We offer a non-technical summary of CEM here, and provide technical details in the Appendix.  

CEM imposes exact matching on a limited set of user-chosen covariates (perhaps drawn from a larger 

set of available covariates), followed by regression on the matched dataset.  CEM divides each selected 

covariate into bins (the “coarsening” part), requires an exact match between a treated unit and one or 

                                                 
3  An important technical note:  The CEM native code should not be used with binary or categorical variables.  The CEM 
implementation in the MatchIt package corrects this problem. 
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more control units on the binned variables, and drops unmatched observations.  For a covariate x (either 

continuous or discrete) and a sample of size n.  CEM divides the domain of x into 𝑏𝑏(𝑛𝑛) = log2(𝑛𝑛) + 1 

bins (rounding up).  The number of bins is often substantial; for example, n = 350 leads to 10 bins for 

each variable.  CEM lets researchers choose a different binning structure, but we use the CEM default 

here, as will most users.4  Each retained treated unit gets weight = 1.5  The control units get varying 

weights, which sum to the number of retained control observations.  Let S denote the multidimensional 

space which contains the binned variables, s index subspaces that contain at least one treated and at least 

one control unit, MT and MC equal the number of retained treated and control units, respectively, and 

ms
T and ms

C be the number of treated and control units in subspace s.  The control weights in subspace 

s equal the fraction of treated observations divided by the fraction of control observations in this 

subspace:6  

𝑤𝑤𝑖𝑖,𝐶𝐶 =
𝑚𝑚𝑇𝑇
𝑠𝑠

𝑀𝑀𝑇𝑇
∗
𝑀𝑀𝐶𝐶

𝑚𝑚𝐶𝐶
𝑠𝑠  

These weights are then used in regression on the matched sample.  Unless otherwise specified, 

we use the default CEM binning structure, as most users will (we confirm in the Appendix that this is 

how CEM is typically used in practice in political science).  CEM is available for both Stata and R; we 

obtained the same results with both.  CEM can be seen as a hybrid between matching and reweighting 

methods.  Treated units are retained if they can be matched exactly to one or more control units, and 

vice-versa, but control units are also weighted. 

Something in the CEM code assigns binary variables to multiple bins, not only the lowest and 

highest.  As shown in the Appendix, this produces substantial loss of sample size and important variation 

                                                 
4  We confirm in the Appendix that departures from the default binning are uncommon.  [*details to come from Parth] 
5  The comparison methods also give a weight of 1 to each treated unit. 
6  Our notation loosely follows Iacus (2012). 
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in effect estimates if one uses the CEM default bins.  Categorical variables have a similar problem.  This 

coding error is fixed in MatchIt, so users should use the MatchIt implementation.7 

B.  Other Balancing Methods 

We compare CEM to regression alone and to five other balancing methods which are commonly 

used in our experience and have code available in Stata, R, or both, and are amenable to off-the-shelf 

use.8  We compare CEM both to methods that provide balance only in expectation and methods that aim 

at exact covariate balance.  For all approaches, we estimate ATT (average treatment effect on the treated).  

For PSM (propensity score matching), we estimate the propensity score with logistic regression and use 

1:1 matching with replacement.9  Nnmatch can be used either with bias correction but without regression 

on the balanced sample, or to create a balanced sample, followed by regression; we use it with regression, 

with 1:1 matching with replacement and the default Mahalanobis distance measure, using teffects 

nnmatch in Stata.  For IPW we estimate the propensity score with logistic regression. eBalance provides 

weights that ensure exact balance on covariate means between treated and control groups.10  The CBPS 

propensity scores provide close, although not exact balance on covariates.  They can be used for 

matching or reweighting; we use reweighting.  We combine each method with regression on the balanced 

dataset (Ho et al. 2007). 

                                                 
7  CEM with manual binning of binary and categorical variables gives the same results as its MatchIt implementation. 
8  We use CEM in R but confirm that we obtain the same results in Stata. 
9  We used psmatch2.ado in Stata, with the “ties” option, which uses all matches if two or more are equally good.  Different 
matching routines, including matching and MatchIt” for R, will produce somewhat different results. 
10  We use eBalance.ado in Stata, but confirmed that we obtain the same results in R.  eBalance can be set to provide balance 
on higher moments, but we use it to balance only on means.  By design, in the reweighted sample, the outcome should be 
orthogonal to the covariates and thus the treatment effect estimate should be the same with or without regression on the 
covariates used for balancing.  Across our replications, this was often but not always true. 
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C.  Comparison Papers 

We summarize here the four papers which use CEM that we reassess. 

1.  Black and Owens (2016) 

Black and Owens assess whether federal appellate judges who are plausible candidates for the 

U.S. Supreme Court (candidate judges) change their voting behavior to curry favor with the President, 

at times when Supreme Court vacancies exist.  They use CEM plus regression as their primary method.  

We study the measures for which they report evidence of a change in voting:  is a candidate judge more 

likely to write a dissent; to write a pro-US decision, or more likely to support the President’s position.   

2.   Mason (2015) 

Mason hypothesizes that “sorting” – the extent to which party identification matches political 

views -- predicts greater political partisanship.  She uses CEM without regression to study whether 

sorting, controlling for the strength of party identity, predicts four measures of partisanship, which she 

terms thermometer bias, like bias, activism, and anger (her Figure 5).  We study these outcomes, using 

CEM and other balancing methods with regression. 

3.  Urban and Niebler (2014) 

Urban and Niebler study the effect on campaign contributions of “spillover” Presidential 

campaign ads, which reach residents in noncontested states who live in the same TV-reception area as 

residents of a neighboring contested state.  Their primary balancing method is PSM; they also use genetic 

matching (Sekhon, 2009) and CEM in robustness checks, in each case without regression.  Genetic 

matching is similar conceptually to eBalance and CBPS – it provides exact or near-exact balance on 

covariates in a finite sample.  In Black and Lerner (2020), we show that Urban-Niebler misestimated 

propensity scores, correct this error, and apply a zero-inflated negative binomial model.  We find, using 
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various balancing methods, that spillover ads predict higher contribution amounts, but not higher 

likelihood of contributing.  We examine that outcome here.   

4.  Carpenter et al. (2012) 

Carpenter and coauthors examine whether Federal Drug Administration (FDA) drug approvals, 

issued close to a Congressional time deadline for FDA action on applications are more likely to lead to 

approval of drugs that later turn out to have important side effects.  They use CEM and optmatch 

(Hansen, 2004) in robustness checks.  We study the three outcomes (black box warnings, safety-based 

withdrawals, and safety alerts) for which they report statistical significance for their base model (their 

Table 3). 

III.  Overview of Performance Measures 

For each paper, we report (in the text or the Appendix) estimates of the average treatment effect 

on the treated (ATT), using regression alone (either OLS, logit, or negative binomial, following the 

original paper) and balancing using each method, followed by regression.  CEM uses ordinary s.e.’s, as 

do the papers we replicate.  We report inference based on randomization inference.  We pull the 

appropriate number of pseudo-treated and pseudo-control firms randomly from the underlying dataset, 

apply each method to the pseudo-sample, compute the ATT estimate, repeat 1,000 times, and compute 

the standard deviation (s.d.) of the and standard of the estimates.11  We do not use sample trimming, 

although trimming can often be good practice (e.g., Crump et al., 2009; King, Lucas, and Nielsen, 2017).   

For each paper and each method, we report a z-score, as a measure of how far each estimate is 

from the average “truth” provided by the other methods, defined for each method v relative to the other 

methods (-v) as: 

                                                 
11  The Appendix contains expanded regression tables that includes standard errors  

Bernard Black
To be done, not yet done as of 2022.06.17, instead we report ordinary and robust s.e.'s and use the larger of the two for inference
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𝑧𝑧𝑣𝑣 =
𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣 − 𝐸𝐸−𝑣𝑣(𝐴𝐴𝐴𝐴𝐴𝐴)

𝐸𝐸−𝑣𝑣(𝑠𝑠.𝑑𝑑. )
  

For the matching estimators, we report the number of distinct treated and control units used; some 

control units are used more than once.  We also construct and report a measure of the effective number 

of control units for the reweighting methods (including CEM), that lets us compare matching and 

reweighting estimators in terms of the effective number of control units actually used.  We normalize 

the weights vi of control units to sum to the number of treated units nt.  We use the vi to compute the 

effective number of control units nc,eff (which we round to the nearest whole number) as follows: 

A control unit with vi ≥ 1 is counted once (similar to how one counts control units used multiple 

times in measuring sample size for matching methods) 

A control unit with vi < 1 is counted at vi units. 

Consider IPW as an example.  Standard IPW weights on control units, before normalization, are p/(1-p).  

The normalization factor is 𝐹𝐹 = 𝑛𝑛𝑡𝑡
∑

𝑝𝑝𝑗𝑗
(1−𝑝𝑝𝑗𝑗)𝑗𝑗

, so vj = F * min[1, 𝑝𝑝
1−𝑝𝑝

].12 

To measure covariate balance after balancing, we use the normalized difference between treated 

and controls for method m and covariate g, defined as (Imbens and Rubin, 2015): 

𝑁𝑁𝐷𝐷𝑚𝑚𝑚𝑚 = (�̄�𝑥𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑥𝑥�̄�𝑚𝑗𝑗𝑗𝑗)/[(𝑠𝑠𝑖𝑖𝑚𝑚2 + 𝑠𝑠𝑗𝑗𝑚𝑚2 )/2]1/2 

Here stg and scg are the standard deviations of the treated and control observations.  We then compute the 

means of the absolute values of the ND’s across all covariates |𝑁𝑁𝐷𝐷𝑚𝑚|��������. 

                                                 
12 In the Appendix, we obtain similar results for effective sample size using Kish’s (1965) measure of effective sample size, 
which was developed for survey sampling with survey weights, adapted for matching methods, which Kish does not address. 
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IV.  Overview of Differences Between CEM and Other Methods 

In this part, we provide an overview of the performance of each method along several dimensions:  

covariate balance; preserving sample size; precision; and z-scores.  

A.  Covariate Balance 

In Figure 1, we plot the mean of the normalized differences for each method; in the bottom panel, we 

report the mean of the fractional differences.  The methods are arrayed along the x-axis with the 

weighting methods first, then other matching methods, then CEM.  The average for each paper is shown 

as a data point in the “column” for each method.  The average (across papers) of the averages (across 

covariates) is shown in a small table underneath each panel.  

For eBalance, covariate balance is exact or very close across comparison papers, with both 

measures.  CBPS does next best, with all means of NDs and FDs less than 0.1.  CEM often does very 

well, but less so using the FD measure.  Nnmatch, IPW, and PSM have variable performance across 

papers, with no clear preference between them.   

There are two main reasons why CEM achieves imperfect balance, despite discarding 

observations that it cannot match exactly.  First, CEM can produce imbalance for variables that CEM 

does not try to balance on.  However, the comparison papers use CEM to balance on all covariates.  Less 

obviously, CEM generates imperfect balance for continuous variables that are matched on.  The culprit 

is the coarsening.  The intuition behind why CEM can produce worse balance than matching on covariate 

values (as in nnmatch) is straightforward.  Consider a vector of continuous variable x, which CEM would 

place in bin bx, and a distance metric m (say Mahalanobis distance), and initially hold sample size 

constant.  CEM will match treated unit i to a control unit j, in the same bin with different actual value xj 

≠ xi  Nnmatch will match unit i to unit j, if j is the closest other available unit, but will match to another 

unit k, perhaps in a different bin, if k is closer (mik < mij).  Thus, for each unit, the nnmatch distance will 
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be equal to or less than the CEM distance: mik ≤ mij.  Matters are more complex given that CEM will 

drop mismatched observations, while nnmatch will not, unless one imposes calipers.  The average 

distance for the treated observations that CEM retains can therefore be either less or more than the 

average distance in nnmatch for the same observations.   

In practice, for the papers we study, the CEM distances are generally smaller than nnmatch (see 

Figure 1), and also smaller than those for all other methods except eBalance, at the cost of reduced 

sample size. 

Figure 1: Covariate Balance Across Methods 
Figure shows mean (across covariates) of absolute values of normalized differences between treated and control units for 
each method, for each paper, for the covariates used in that paper.  Small table below the panels shows the mean of means 
with no balancing, and for each balancing method. 

 
Mean of means Raw eBalance CBPS IPW nnmatch PSM CEM 

NDs 0.265 0.002 0.026 0.051 0.051 0.049 0.011 
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B.  Effect of Different Balancing Methods on Sample Size 

Figure 2 shows the fraction of treated units (top panel) and the fraction of control units (bottom panel) 

retained by each method.  The methods are arrayed along the x-axis in the same order as in Figure 1; the 

y-axis shows the fraction of units retained.  As the top panel illustrates, all methods except CEM retain 

all treated units.  The fraction of treated units retained by CEM varies widely, from 61% for Urban and 

Niebler to only 5% for Mason.  The large loss of sample size for Mason reflects the curse of 

dimensionality:  Mason balances on 10 variables.  CEM also retains fewer effective control units than 

other methods (bottom panel).  This loss of control units is driven mainly by CEM’s loss of treated units. 

  



 
 

15 

 

Figure 2: Percent of Treated and Control Units Retained 
Top panel: Proportion of treated units retained after balancing. All methods other than CEM retain all treated units.  Bottom 
panel:  Proportion of effective control units retained after balancing. Balancing methods are shown along the x-axis, and 
proportion of units retained is shown vertically.  For Carpenter, we use his larger sample, covering 1993-2007. 

 
C.  Relative Standard Errors 

The loss of sample from using CEM has substantial implications for precision.  We illustrate this 

in Figure 3.  The figure shows the ratio of the s.e. using a particular method (larger of ordinary or robust 
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s.e.’s) to the average for the other five methods.  For papers for which we examine more than one 

outcome (Black-Owens, Carpenter, Mason), the figure shows one data point for each outcome.  A small 

table underneath the figure shows the mean of the relative s.e.’s for each method.  CEM has much larger 

s.e.’s than any other method.  For the other methods, s.e.’s are similar for eBalance, CBPS, IPW, and 

PSM; and somewhat higher for nnmatch the highest. 

Figure 3:  Relative Standard Errors 
Comparison of standard errors (s.e.’s) for treatment effect estimates by method. Balancing methods are shown along the x-
axis.  Y-axis shows the ratio of the s.e. using the indicated method to the average of the s.e.’s for the other methods, using for 
each the larger of ordinary or robust s.e.’s.  For papers for which we study multiple outcomes (Black-Owens; Carpenter; 
Mason), graph shows one data point for each outcome. 

 
 eBalance CBPS IPW nnmatch PSM CEM 

Mean 0.821  0.835 0.836 0.891 0.779 2.22 
 

Figures 2 and 3 illustrate an important tradeoff for CEM that is not present for the other methods:  

One must either limit the number of matching variables and accept imbalance on other variables, or use 

more matching variables, leading to smaller samples and larger s.e.’s. 

Bernard Black
Convert to s.d.'s based on randomization inference



 
 

17 

E.  Point Estimates:  CEM Versus Other Methods 

In Figure 4, we plot the z-scores for the treatment effect estimates from each method.  We do not 

know truth, but the average estimate from a number of methods should provide a fair approximation to 

truth.  Thus, a large positive or negative z-score indicates that an estimate is likely to be incorrect.  The 

format of Figure 4 is similar to Figure 3.  Each column shows the z-scores for a particular method, with 

one data point for each outcome.  A small table underneath the figure shows the mean and maximum of 

the absolute values of the z-scores for each method.   

CEM performs dramatically worse than the other methods.  A majority of the CEM estimates are 

outside the 95% confidence bounds from the other methods (z > ± 1.96); the CEM scores range from -

9.23 (Mason, like bias) to +5.19 (Black-Owens, judge writes dissent). Among the other methods, the 

reweighting methods perform well, and the matching methods somewhat less well.  nnmatch nearly as 

well, with z-scores near zero and reasonably symmetric around zero.  The stark message from Figure 4:  

CEM estimates cannot be trusted.  Below, we examine more closely two Black-Owens outcomes and 

two Mason outcomes, and confirm that CEM produces implausible estimates for these outcomes. 
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Figure 4:  Z-Scores for Treatment Effects 
Comparison of z-scores for treatment effect estimates by method. Balancing methods are shown along the x-axis.  Y-axis 
shows the z-scores for the indicated method, each measured relative to the mean coefficient and s.e. from the other estimates, 
using for each method the larger of ordinary or robust s.e.’s.  For papers for which we study multiple outcomes (Black-
Owens; Carpenter; Mason), graph shows one data point for each outcome. 

  
eBalance CBPS IPW nnmatch PSM CEM 

Mean Abs. Value  0.571 0.543 0.563 0.665 0.878 3.34 
Max Abs. Value 1.1 0.94 1.05 1.76 1.95 9.24 

 

Bernard Black
Need to use s.d.'s for this; right now uses larger of ordinary or robust s.e.'s
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V.  Analysis of Black and Owens (2016) 

We discuss Black and Owens (2016) in detail, to illustrate what can go wrong when using CEM.  

Black and Owens hypothesize that federal appellate judges who are plausible candidates for the U.S. 

Supreme Court change their voting behavior during periods when the Supreme Court has a vacancy, and 

make decisions which are closer to the President’s political preferences.  CEM plus logistic regression 

is their sole method.  We study here the three outcomes for which they find support for their hypothesis 

using CEM:  Judge Writes Dissent, Judge Writes Pro-US Opinion, and Decision Consistent with 

President’s Ideology.  Their sample is 11,787 decisions by panels with at least one judge who was a 

contender for the Supreme Court vacancy during their sample period, from 1946 to 2010.   

A.  CEM Versus Comparison Methods 

We present regression results in Table 1 for logistic regression alone without balancing, and for 

balancing using CEM and the comparison methods, followed by logistic regression.  The last column 

replicates the Black-Owens results.  Consider first the outcome Judge Writes Dissent (Panel A).  The 

CEM coefficient is 0.907 and statistically significant, with z = 5.19.  In contrast, all other methods 

provide small negative and statistically insignificant coefficients, with small z-scores.  CEM also retains 

only 1,803 of the 4,901 “treated” decisions (decisions when a vacancy exists) and only 611 effective 

controls.  
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Table 1.  Black-Owens Results with Different Balancing Methods 
Last column provides replication of Black-Owens use of CEM plus logit regression results from their Appendix Table 2, for 
contender judges, for indicated outcomes and the Black-Owens covariates:  Judge’s Judicial Common Space (JCS) score; 
Judge-President ideological distance; Judge-Panel Ideological Distance; circuit median JCS score; Supreme Court median 
JCS score; trial court is reversed; and case is published.  Panel A (judge writes dissent); Panel B (judge writes pro-US 
opinion); Panel C (opinion consistent with President’s ideology).  Other columns use indicated balancing methods plus logit 
regression.  Coefficients on covariates and constant term are suppressed.  Ordinary standard errors (s.e.’s) in brackets; robust 
standard errors and randomization inference standard deviations (s.d.’s), based on 1,000 draws, in parentheses.  * indicates 
significance at the 5% level based on randomization inference s.d.’s.  Significant results, at 5% level or better, are in boldface.  
Z-score for given method is estimate for that method minus mean estimate from other methods)/(mean s.e. from other 
methods); z-score, s.e. ratio, and statistical significance are measured using the larger of ordinary or robust s.e.’s.   

 (1) (2) (3) (4) (5) (6) (7) 
Balancing Method None PSM nnmatch IPW eBalance CBPS-wts CEM 
Panel A.  Judge Writes Dissent       
Vacancy Exists -0.155 -0.167 -0.062 -0.042 -0.056 -0.057 0.907** 
s.e. [ordinary] [0.159] [0.161] [0.261] [0.166] [0.168] [0.108] [0.451] 
s.e. (robust) (0.154) (0.186) (0.255) (0.168) (0.166) (0.165) (0.115) 
random inf. s.d. 0.142 0.177 0.180 0.142 0.142 0.143 0.196 
z-score   -- -1.26 -0.79 -0.63 -0.70 -0.70 5.19 
Panel B.  Judge Writes Pro-US Decision      
Vacancy Exists 0.668* 0.679* 0.652* 0.574* 0.579* 0.576* 1.161* 
s.e. [ordinary] [0.101] [0.102] [0.243] [0.097] [0.097] [0.063] [0.212] 
s.e. (robust) (0.104) (0.131) (0.184) (0.120) (0.120) (0.119) (0.091) 
random inf. s.d.        
z-score -- -0.18 -0.44 -0.94 -0.91 -0.93 3.74 
Panel C.  Decision Consistent w President’s Ideology     
Vacancy Exists 0.291* 0.283* 0.126 0.131* 0.137* 0.140* 0.350* 
s.e. [ordinary] [0.048] [0.049] [0.091] [0.048] [0.047] [0.031] [0.116] 
s.e. (robust) (0.048) (0.063) (0.097) (0.056) (0.056) (0.056) (0.044) 
random inf. s.d.        
z-score -- 1.39 -1.18 -0.98 -0.89 -0.84 2.84 
treated (control) 4901(6886) 4901(2147) 4901(847) 4901 (6886) 4901 (6886) 4901 (6886) 1803 (687) 
effective controls  1244 690 3051 3146 3191 611 

The CEM results for the other two Black-Owens outcomes are also outliers, although less 

extreme.  For Judge Writes Pro-US Decision, all methods produce positive and significant coefficients.  

All methods other than CEM provide similar coefficients, between 0.57 and 0.68; the CEM coefficient, 

at 1.16, is almost twice as high (z = 3.74).  For Decision Consistent with President’s Ideology, most 

methods produce positive and significant coefficients, but the CEM coefficient of 0.350 is again higher 

than with any other method, with a substantial z-score (2.84).   
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B.  Decile Analyses 

Could the CEM estimates reflect truth, despite being far away from the other estimates?  We 

investigate that question for the first two Black-Owens outcomes, for which the CEM estimate is far 

from those using other methods.  We divide the sample into deciles based on propensity to be treated, 

running within-decile regressions, and report the within-decile estimates and the average across deciles, 

weighting each by the number of treated units in each decile nt,d.  This subclassification approach is 

recommended by Imbens and Rubin (2015); see also Imbens (2015). Panel A shows the fraction of the 

treated and control units retained by CEM by decile.  A small table under the figure shows the number 

of treated and control units by decile.  CEM generally retains around 30% of treated units, but a lower 

percentage for deciles 1 and 2 and a higher percentage for deciles 8 and 9.  These differences will produce 

a biased treatment effect estimate if there is treatment heterogeneity across deciles. 

In Panel B, we show treatment effect estimates and 95% CIs for each decile for Judge Writes 

Dissent, from logit regressions similar to those in Table 1. Dotted horizontal lines show the average 

estimate for all other methods (-0.089) and for CEM (+0.907).13  There is treatment heterogeneity, which 

without more, will produce modest upward bias in the CEM estimate.  But the actual CEM estimate has 

deeper problems.  The weighted average of the within-subclass estimates should be close to the full 

sample ATT estimate. This expectation holds for the other balancing methods (not reported), but not for 

CEM.  Instead, the CEM estimate is higher, often much higher, than any of the decile estimates.  The 

weighted mean of the decile estimates is 0.027 – effectively zero, and close to the estimates from other 

methods.  

                                                 
13  For the top decile, not shown in the graph, the logit regression will not run, but the estimated treatment effect is zero, 
because the binary outcome is positive for all treated and control units. 
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We follow a similar approach in Panel C, for Judge Writes Pro-US Opinion.  The CEM estimate 

is higher than all decile estimates except decile 1, which contains only 1.5% of the treated units.  The 

weighted mean of the decile estimates is 0.236; far below both the CEM overall estimate (1.161) and the 

average of the estimates from other methods (0.621); and well below the 95% confidence interval (CI) 

for all methods except the noisiest (nnmatch). 

The large departures between the CEM overall estimate and the weighted average of the within-

decile estimates provide evidence that the CEM overall estimate is wrong.  We find below, for Mason, 

a similar pattern in which the within-decile estimates are far from the overall CEM estimate. 
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 Figure 5: Black-Owens Analysis of Propensity Score Deciles 
Panel A. Percent of treated and control units kept by CEM by propensity score decile.  Small table underneath Panel A shows 
original numbers of treated and control units by decile. Panel B. Treatment effects estimated within each decile for Judge 
Wrote Dissent. Panel C.  Similar for Judge Wrote Pro-US Opinion.  Panels B and C.  Horizontal lines show estimated 
treatment effect for CEM and average of all other methods.  Shaded areas show 95% confidence intervals. 

 

 
Treated and Control Units in Each Decile 

 Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7  Decile 8 Decile 9 Decile 10 
Treated 72 80 199 317 386 640 597 799 863 948 
Controls 1107 1099 979 862 793 538 582 380 315 231 
Retained by CEM         
Treated 13 15 69 103 117 214 170 466 395 241 
Controls 10 6 31 87 74 93 120 122 111 33 
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C.  Varying the Number of Covariates to be Balanced On 

We next explore the sensitivity of estimates from the different methods to which variables are 

balanced on.  We again focus on the first two Black-Owens outcomes.  To generate Figure 6, we hold 

constant the second stage regression, which includes all covariates and progressively increase the number 

of covariates balanced on.  For a given number of covariates, we randomly choose which covariates to 

balance on.  For 3 covariates, for example, we randomly select three of the 7 covariates, balance on 

those, compute ATT estimates for each method, repeat 1,000 times, and show box-and-whiskers plots.  

These plots show the mean, the box bounds show 25th and 75th percentiles, and whiskers show estimates 

outside the box.14 

In Panel A (Judge Writes Dissent), the ATT estimates are not sensitive to the choice of covariates 

to balance on for the reweighting methods.  We see more sensitivity for the matching methods and for 

CEM.  But with all covariates, the ATT estimates with matching eventually settle down at levels close 

to the reweighting estimates.  CEM behaves differently.  The range of estimates is unremarkable for 1-

3 covariates.  But as the number of covariates increases (and the CEM sample therefore progressively 

shrinks), the CEM estimate departs further and further from the other methods. 

In Panel B (Judge Writes Pro-U.S. Opinion), CEM’s behavior is unremarkable for 1-5 covariates.  

But when we add a 6th covariate, the CEM estimate soars to well above the others, and rises further with 

all 7 covariates.  Both this instability, and its tendency to rise as more covariates are balanced on, is a 

troubling feature of the CEM estimates.  The CEM estimates are more model-dependent than at least 

those using the reweighting methods.15 

                                                 
14  The number of combinations varies with the number of covariates, and is less than 1,000 for 1-4 covariates. 
15  Compare the assertion in King and Nielsen (2019), at xxx [*add quote; look for something in original CEM paper(s)] 



 
 

25 

Figure 6: Black- Owens ATT Estimates, Varying the Covariates Balanced on  
Figure shows box-and-whiskers plots of ATT estimates from the indicated balancing methods, varying the number of 
covariates balanced on.  Second-stage regression includes all 7 covariates.  For each number of covariates, we randomly 
select this number from the full set of covariates, and iterate 1,000 times.  Panel A.  Dependent variable is Judge Wrote 
Dissent.  Panel B.  Dependent variable is Judge Wrote Pro-U.S. Opinion. 

Panel A. Dependent Variable: Wrote Dissent 

 
Panel B. Dependent Variable: Wrote Pro US decision 
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D.  Sensitivity to Uninformative Covariates 

Given the sensitivity of CEM to the variables balanced on, we explored sensitivity to adding 

additional “noise” variables that are, by construction, uncorrelated with both the treatment and the 

outcome.  The precision of regression estimates might be affected by adding irrelevant variables, but 

adding them they will not produce bias.  One should expect the same for a balancing method.   

In Figure 7, we add randomly drawn variables to both the balancing and regression stages, and 

iterate 1,000 times for each method.  For the left-hand part of the figure, we add a random binary 

variable (mean = 0.5).  For the center part, we add a continuous, unit-normal variable; for the right-

hand part we add both variables.16  The figure shows box-and-whiskers plots for each method, showing 

the change in the ATT estimate with the random binary covariate added.  We winsorize the graph at 

±5, but show in the Appendix a version winsorized at ±20.  The center part is similar, but shows the 

change due to adding the continuous random covariate; the right-hand part shows the change after 

adding both random covariates.  Panel A shows results for the Judge Wrote Dissent. The reweighting 

methods are minimally affected by adding these variables.  The matching methods perform less well.  

For PSM, some estimates are affected but the largest mean for the change in estimate across these three 

choices is modest at 0.053 (for one binary and one continuous variable), which is a fraction of the s.e. 

of 0.186 from Table 1 (larger or ordinary or robust).  The nnmatch results are more troubling, with a 

largest mean change of 0.225 (for one binary variable), close to the Table 1 s.e. of 0.261. 

The CEM estimates are especially sensitive to adding noise variables, especially a continuous 

variable, with apparent bias.  For one continuous and one binary variable, the mean change is 1.533 

(about 0.75 times the Table 1 s.e.).  For one continuous variable, the mean change is 0.580 (s.d. = 

1.16), with skewness = 11.05.  If we add both, the mean change is still larger at 1.533 (s.d. = 3.82), 

                                                 
16  We draw the binary variable from the binomial distribution with mean = 0.5 and draw the continuous variable from the 
normal distribution with standard deviation = 1. 
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with some very large positive changes (95th percentile =16.4).  In the Appendix, we find larger bias 

and skewness if we add two continuous random variables, or two binary and two continuous random 

variables. 

Panel B shows a similar plot for Judge Wrote Pro-U.S. Opinion.  The reweighting estimates are 

again minimally affected.  There is noise in the matching but the mean across simulations is similar to 

the point estimate without the random variable(s).  The CEM estimates are strongly affected by adding 

a random binary variable, a random continuous variable, or one of each. 

In the real world, researchers would not knowingly include a truly random variable, but might 

include a variable that on theoretical grounds might correlate with both treatment and outcome, but in 

fact is weakly correlated with both.  As Figure 7 shows, for CEM, that could produce large bias, which 

would not be apparent to the researcher.  This variable would appear highly relevant because including 

it strongly affects the treatment effect estimates.
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Figure 7: Black- Owens ATT Estimates:  Sensitivity to Adding Random Covariates  
Figure shows box-and-whiskers plots of ATT estimates from the indicated balancing methods, where we add a random binary 
variable (mean = 0.5) (left-hand plots), a random, unit normal continuous variable (middle plots), or both together (right-
hand plots).  Second-stage regression includes both original and added covariates.  We draw each random covariate from the 
corresponding distribution and iterate 1,000 times. Maximum difference for estimates capped at (5, -5 for visualization.  Panel 
A.  Dependent variable is Judge Wrote Dissent.  Panel B.  Dependent variable is Judge Wrote Pro-U.S. Opinion.  

Panel A. Dependent Variable: Judge Wrote Dissent 

 
Panel B. Dependent Variable: Judge Wrote Pro-U.S. Opinion 
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E.  Statistical Power and Over-Rejection of the Null  

We next investigate the statistical power of each method, and whether the null is over- or under-

rejected.  We begin with the actual Black-Owens sample, with the actual treatment assignment.  We add 

a simulated, normally distributed outcome, with unit standard deviation and an imposed mean.  We begin 

with an imposed mean of zero (no treatment effect). We run each method, obtain an ATT estimate, and 

repeat 1,000 times, drawing the outcome at random each time from the unit normal distribution with the 

specified mean. For each draw we save the coefficient and s.e.  We then progressively increase the 

imposed effect size in increments of 0.025.  In Figure 8, we plot the proportion of statistically significant 

estimate, at the 5% significance level.  Figure 8 shows results for the Black-Owens sample. 

Consider first an imposed null treatment effect.  Regression without balancing performs as it 

should, with a 5% rejection rate.  The matching methods also have rejection rates around 5%.  The 

reweighting methods all over-reject, with rejection percentages around 15%.  This is unexpected, for 

methods which are believed to be doubly robust, although not ruled out by the double-robustness proofs, 

which address whether estimates are consistent (e.g., Bang and Robins, 2005; Kang and Schaefer, 2007).  

CEM rejects the null around 45% of the time.   

As we increase the imposed treatment effect, regression and the reweighting methods reach 

nearly 100% power at an imposed effect of 0.1; PSM converges somewhat more slowly; and nnmatch 

still more slowly, reaching nearly full power more at an imposed effect of 0.15.  CEM convergence to 

full power is much slower.  CEM’s lower power comes both from a smaller retained sample and greater 

s.e.’s for the same sample size   [*more to come here] 
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Figure 8.  Statistical Power for Black-Owens Dataset 
Figure shows for each method, statistical power to reject the null at the 95% confidence level, based on 1,000 simulations, 
for different treatment effects (from 0 to 0.2 in increments of 0.025) imposed on the Black-Owens dataset (4901 treated units; 
6886 control units).  Treatment effects are drawn from a unit normal variable with imposed mean.  For each simulation, we 
impose the treatment effect, run the balancing method followed by regression, and extract the ATT estimate and s.e. 

 

VI.  Analysis of Other Papers 

A.  Mason (2015) 

1.  Regression Results 

Mason studies voter polarization.  She hypothesizes that polarization will increase if voters are 

“sorted” hold party identification consistent with their ideological views.  She studies four outcomes: 

thermometer bias, like bias, activism, and anger.  She tests this hypothesis using CEM, and reports results 

in her Figure 5, but finds only mild support.  All coefficients have the predicted signs, but the coefficient 

on a sorting dummy (=1 if a sorting measure is roughly above the sample median) is significant only for 

anger. 
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In Table 2 we present results for each Mason outcome using OLS alone, our comparison methods, 

and CEM.17  The CEM retained sample is much smaller than those for other methods, reflecting Mason’s 

use of 10 covariates (5 are binary and four are categorical).  All other methods strongly support Mason’s 

hypothesis, with similar coefficients and small z-scores.  The CEM results are very different.  The CEM 

estimates are far below well below those from the other methods for thermometer bias and like bias (z = 

-5.77 and -9.23, respectively, somewhat below the others for activism (z = -1.56), and above the others 

for anger (z = 2.75) .  CEM is also much less precise, with relative standard errors 3-4 times the average 

of the other methods. 

The combination of mostly lower coefficients and larger s.e.’s strongly weakens inference using 

CEM.  Thermometer bias and like bias have t-statistics above 10 for all other methods, yet with CEM 

thermometer bias is only marginally significant and like bias is insignificant.  Activism has t-statistics 

above 5 for the other methods, but is insignificant with CEM.  The only outcome which is statistically 

significant with CEM is for anger, but inference is much stronger with the other methods, despite lower 

point estimates. 

                                                 
17  We have substantive concerns with Mason’s approach.  In Figure 5, she does not control for a variable she calls “ideological 
strength,” which is a core component of her sorting variable.  We put those concerns aside here and focus on the implications 
of different balancing methods, assuming her substantive model is appropriate. 
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Table 2.  Mason Results with Different Balancing Methods 
Last column provides CEM plus OLS regression results for indicated outcomes, comparable to Mason (2015), Figure 5, for 
indicated outcomes.  Mason’s figure uses CEM without regression,  Other columns use indicated balancing method followed 
by OLS regression  We use Mason’s exact sample (she requires data for all outcomes and covariates).  Sorting dummy = 1 is 
1 if idcomplexity ≥ 0.15; which is slightly below the sample median of 0.162.  Balancing and regression use the following 
covariates: partisan strength (we divide Mason’s categorical variable into dummy variables for the four levels); Issue Position 
Extremity, Education, Male, White, Age, South, Urban, Church Attendance, and Evangelical.  Coefficients on covariates and 
constant term are suppressed.  Ordinary standard errors (s.e.’s) in brackets; robust standard errors and randomization inference 
standard deviations (s.d.’s), based on 1,000 draws, in parentheses.  *, indicates significance at the 5% level, baswed on 
randomization inference s.d.’s.  Significant results, at .05 level or better, in boldface.  z-score and s.e. ratio are defined in 
Table 1. 

 (0) (1) (2) (3) (4) (5) (6) 
Balancing method none PSM nnmatch IPW eBalance CBPS-wts CEM 
Panel A.  Thermometer Bias       
Sorting dummy 0.0563* 0.0601* 0.0568* 0.0590* 0.0594* 0.0591* 0.0309 
s.e. [ordinary] [0.00487] [0.00406] [0.00407] [0.00462] [0.00540] [0.00439] [0.0165] 
s.e. (robust) (0.00493) (0.00407) (0.00406) (0.00536) (0.00540) (0.00533) (0.0170) 
random inf. s.d.        
z-score -- 0.95 0.42 0.80 0.87 0.82 -5.77 
s.e. ratio -- 0.55 0.55 0.75 0.75 0.74 3.51 
Panel B.  Like Bias       
Sorting dummy 0.0483* 0.0610* 0.0573* 0.0558* 0.0570* 0.0561* 0.0166 
s.e. [ordinary] [0.00457] [0.00373] [0.00376] [0.00428] [0.00492] [0.00407] [0.0168] 
s.e. (robust) (0.00441) (0.00373) (0.00375) (0.00485) (0.00492) (0.00486) (0.0175) 
random inf. s.d.        
z-score -- 1.73 1.12 0.89 1.10 0.94 -9.23 
s.e. ratio -- 0.52 0.52 0.70 0.71 0.70 3.96 
Panel C.  Activism       
Sorting dummy 0.0283* 0.0323* 0.0329* 0.0314* 0.0320* 0.0317* 0.0248 
s.e. [ordinary] [0.00453] [0.00381] [0.00374] [0.00433] [0.00533] [0.00413] [0.0144] 
s.e. (robust) (0.00436) (0.00381) (0.00374) (0.00521) (0.00533) (0.00523) (0.0152) 
random inf. s.d.        
z-score -- 0.25 0.35 0.10 0.21 0.15 -1.56 
s.e. ratio -- 0.55 0.54 0.78 0.80 0.79 3.26 
Panel D.  Anger        
Sorting dummy 0.0812* 0.0814* 0.0717* 0.0822* 0.0826* 0.0821* 0.108* 
s.e. [ordinary] [0.0100] [0.00851] [0.00853] [0.00969] [0.0114] [0.00924] [0.0379] 
s.e. (robust) (0.0103) (0.00850) (0.00853) (0.0112) (0.0114) (0.0113) (0.0397) 
random inf. s.d.        
z-score -- -0.24 -0.95 -0.19 -0.16 -0.19 2.75 
s.e. ratio -- 0.52 0.52 0.70 0.72 0.71 3.90 
observations 9858 7890 8009 8970 9858 9858 572 
treated (control) 5802 (4056) 5802 (2088) 5802 (2207) 5802 (3168) 5802 (4056) 5802 (4056) 294 (278) 
Effective controls    3023 2966 3000 254 

Bernard Black
Add randomization inference here too
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1. Decile Analysis 

Figure 9 provides a decile analysis of the first two Mason results, similar to that presented above for 

Black-Owen.  Panel A shows the fraction of treated and control units retained by CEM by propensity 

score decile.  The percentage of treated units retained by CEM averages around 5%, but is markedly 

higher for decile 2 and only 1.3% for decile 10.  These differences will produce biased estimates if there 

is treatment heterogeneity across deciles.   

In Panel B, we show treatment effect estimates and 95% CIs by decile for Thermometer Bias. 

Dotted horizontal lines show the average estimate for all other methods (+0.058) and for CEM (+0.301).  

There is treatment heterogeneity, with the estimate highest for deciles 9 and 10.  But the actual bias is 

far more than can be explained by treatment effect heterogeneity.  The CEM estimate is lower than any 

decile estimate.  Similarly, in Panel C, the CEM estimate for Like Bias is lower than each decile estimate.   

For both outcomes, the mean of the CEM decile estimates, weighted by the number of retained 

treated units, is closer to the estimates from other methods than the CEM full-sample estimate.  For 

Thermometer Bias:  CEM weighted mean = 0.038 vs. mean from other methods of 0.058 and CEM 

estimate of 0.031.  For Like Bias:  CEM weighted mean = 0.034 vs. mean from other methods of 0.056 

and CEM mean of 0.015.   
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Figure 9: Mason Propensity Decile Comparison 
Panel A: Percent of treated and control units kept by CEM by propensity score decile.  Small table underneath Panel A 
shows original numbers of treated and control units by decile. Panels B & C: Treatment effect estimated within each decile 
using logistic regression. Horizontal lines show estimated treatment effect for CEM and for average of all other methods.  

 
Treated and Control Units in Each Decile 

 Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7  Decile 8 Decile 9 Decile 10 
Treated 400 459 504 511 570 587 610 671 696 794 
Controls 497 438 393 386 327 310 287 226 201 103 
Retained by CEM         
Treated 18 42 35 27 32 38 33 30 29 10 
Controls 19 41 35 30 29 37 26 25 25 11 
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Figure 10 assesses sensitivity to the covariates balanced on.  The structure of this figure is 

similar to Figure 6 above.  The reweighting methods are again insensitive to how many covariates 

are balanced on, and which ones.  This time, the PSM estimates are especially sensitive to the 

covariates balanced on for small numbers of covariates but converge to the other estimates as the 

number of covariates balanced on increases.  The nnmatch estimates are consistently a bit higher 

than those from regression and the reweighting methods but not sensitive to number of covariates.  

CEM appears stable, and similar to other estimates, when balancing on 1-7 covariates, but 

increasingly departs from the other estimates as we add additional covariates.
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Figure 10: Mason ATT Estimates, Varying the Covariates Balanced on 
Figure shows box-and-whiskers plots of ATT estimates from the indicated balancing methods, varying the number 
of covariates balanced on.  Second-stage regression includes all 10 covariates.  For each number of covariates, we 
randomly select this number from the full set of covariates, and iterate 1,000 times.  Panel A.  Dependent variable is 
Thermometer Bias.  Panel B.  Dependent variable is Like Bias.  All 10 covariates are used in the regression stage. 

Panel A Dependent Variable: Thermometer Bias 

 
Panel B. Dependent Variable: Like Bias 
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In Figure 11, we assess the sensitivity of each method to adding a random binary covariate, 

a random continuous covariate, or one of each.  Regression and the reweighing methods are 

minimally affected.  For the random binary covariate, the matching methods show both spread in 

estimates and apparent bias, CEM shows spread but little bias.  For the random continuous 

covariate, CEM’s spread is much larger than for the other methods.  When we add both a random 

binary and a random continuous variable, the CEM spread becomes huge, relative to the point 

estimates.  In an actual study, where one has only a single draw, the spread in estimates, even 

without bias, could produce treatment effect estimates that are far from truth.
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Figure 11: Mason ATT Estimates:  Sensitivity to Adding Random Covariates  
Figure shows box-and-whiskers plots of ATT estimates from the indicated balancing methods, where we add a 
random binary variable (mean = 0.5) (left-hand plots), a random, unit normal continuous variable (middle plots), or 
both together (right-hand plots).  Second-stage regression includes both original and added covariates.  We draw 
each random covariate from the corresponding distribution and iterate 1,000 times. Panel A.  Dependent variable is 
Thermometer Bias.  Panel B.  Dependent variable is Like Bias.  

Panel A. Dependent Variable: Thermometer Bias 

 
Panel B. Dependent Variable: Like Bias 
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In Figure 12, we impose artificial treatment effects to the Mason data, using the same approach 

as in Figure 8.  This time, in contrast to the Black-Owens results in Figure 8, regression, the 

reweighting methods, and CEM have correct size for a zero imposed effect, while the matching 

methods over-reject the null.  However, CEM has much less power than the other methods.  All other 

methods have nearly complete power to detect an 0.1 effect; but at this effect size, CEM remains 

severely underpowered. 

Figure 10.  Statistical Power  
Figure shows for each method, statistical power to reject the null at the 95% confidence level, based on 1,000 simulations, 
for different treatment effects (from 0 to 0.2 in increments of 0.025) imposed on the Mason dataset ((5802 treated units; 4056 
control units).  Treatment effects are drawn from a unit normal variable with imposed mean.  For each simulation, we impose 
the treatment effect, run the balancing method followed by regression, and extract the ATT estimate and s.e. 

 

B.  Urban and Niebler (2014) 

We discuss Urban-Niebler and Carpenter more briefly here, and provide details in the Appendix.  Urban-

Niebler study the effect on campaign contributions of “spillover” Presidential campaign ads, which reach 
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residents in noncontested states who live in a TV-reception area that overlaps a neighboring contested 

state.  They use PSM as their principal balancing method, and CEM as a robustness check.  Appendix 

Table App-1 is adapted from the Black-Lerner (2022) reexamination of Urban-Niebler.  It shows the 

predicted effect on whether a contribution is made for treated zipcodes (which received at least 1,000 

spillover ads during the 2008 Presidential campaign), and on amount contributed conditional on a 

contribution being made.  CEM is again an outlier.  The estimated effect of spillover ads on amount 

contributed (given that a contribution is made) is positive and significant across all five other balancing 

methods, marginally significant with regression alone, but near zero and insignificant with CEM (z = -

3.16). 

C.  Carpenter et al. (2012) 

Carpenter et al. are interested in how administrative deadlines shape decision timing and the quality of 

the decisions made. They study FDA drug approvals, find that administrative deadlines for decisions 

induce many decisions made by examiners just before the deadlines, and that the “just-before-deadline” 

approvals are associated with higher rates of future safety problems (severe, “black box” safety 

warnings; safety-based withdrawal of a drug from the market; and less-severe safety alerts).  We present 

results in Appendix Table App-2 for Black Box Warning, Safety-Based Withdrawal, and Safety Alert.  

For all three outcomes, the reweighting estimates are similar, statistically significant, and similar 

to estimates from regression alone.  In contrast, the matching methods, including CEM, produce more 

varied estimates, larger s.d.’s, and insignificant results.  CEM keeps only 35 of the 86 treated units, 

leading to higher s.d.’s than other methods.  Relative to the other matching methods, CEM does not 

provide outlier estimates with z-scores above 2, but it remains a poor choice because it discards most of 

the treated units from an already small sample, with resulting lower precision and the potential for biased 
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estimates.  The large differences between reweighting and matching methods suggest that there is value 

in using both broad approaches. 

VII.  Discussion:  Why Does CEM produce Odd Results? 

Our major takeaways are as follows. First, CEM can produce very different results than the other 

methods, and can produce full sample results that are inconsistent with subsample results. While it 

provides reasonable covariate balance, this comes at the cost of much smaller retained samples than 

other methods, and thus lower precision.  If one limits the number of variables to be balanced on to 

preserve sample size, one loses covariate balance for the variables not balanced on and can obtain widely 

varying estimates, depending on the variables balanced on (Figures 6, 10).  If CEM had a consistent 

direction of bias—if, for example, estimates were always closer to zero, it might still a useful robustness 

check.  However, CEM is consistently inconsistent: CEM estimates can be much farther from zero than 

all other estimates (for Black-Owens) but can also be near-zero when all other methods produce 

statistically significant estimates (Mason). 

Our blunt judgment:  CEM should never be used as a primary balancing method, and it is unclear 

why researchers should use it at all.  There are other, better methods available.  We pursue a more careful 

comparison of the other methods in separate work (Black, Lalkiya, and Lerner, 2022), but note that for 

the methods and comparison papers we use here, eBalance performed well across the board.  The 

matching methods (PSM and nnmatch) performed worse than the reweighting methods (consistent with 

the concerns about PSM in King and Nielsen, 2019), but substantially better than CEM. 

If very close covariate balance is important, other methods can achieve this without the loss of 

sample size or CEM’s other quirks.  We studied one exact balancing method (eBalance) and one near-

exact method (CBPS with weights), but other methods also exist, including Jose Zubizarreta’s stable 

balancing weights, Jas Sekhon’s genetic matching, and Bryan Graham’s inverse propensity tilting.  If 
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easy implementation is important, eBalance is available in both Stata and R.  Perhaps eBalance will 

perform oddly in other datasets, but the only warning signs in this project was over-rejection of the null 

when we imposed an artificial treatment effect on the Black-Owens data.  For R users, CBPS with 

weights is a reasonable alternative.  If one is willing to accept somewhat worse covariate balance, IPW 

is implemented in both Stata and R and performed reasonably both for us and Busso, DiNardo and 

McCrary (2014). 
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Figure XX: Simulating Sample Loss from CEM by Number of Covariates 

Below, we simulate (with 1,000 draws) the proportion of the sample remaining after using CEM for 
matching, as a function of the number of covariates used for matching, for sample sizes of 250, 500, 
1,000, and increments of 500 after that, up to 10,000.  The top graph shows the proportion remaining if 
covariate values are drawn from the normal distribution; the bottom shows the proportion remaining if 
the covariate values are drawn from the uniform distribution.  With the more severe challenge (the 
uniform distribution), severe sample loss sets in with four covariates, and almost no sample is left with 
5 or more covariates, even for very large samples.  CEM does better at handling covariates drawn from 
the normal distribution, but even so, there is major sample loss with five covariates, and essentially no 
sample is left with seven covariates. 
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